HIGHLIGHTS

\square High pumping speed for all active gases
\square Pumping speed for noble gases and methane
\square Constant pumping speed for active gases in UHV-XHV
\square No intrinsic pressure limitations
\square Minimal power requirement during operations
\square Extremely compact and light pump
\square Reduced magnetic interference
\square Able to measure pressure lower than 10^{-9} mbar
\square Improvement of the ultimate vacuum in UHV-XHV systems
\square Reduction of the footprint and weight of vacuum systems
\square Scanning /transmission electron microscopes
\square Surface science equipments
\square Portable analysers vacuum instrumentations
\square General purpose UHV systems
\square Particle accelerators, synchrotron radiation sources and related equipments

The NEXTorr® ${ }^{\circledR}$ 2000-10 is an extremely compact pump which integrates sputter ion pump (SIP) and NEG pump technologies with larger pumping speed and capacity to sorb gases very effectively down to the XHV level. The getter cartridge is made of porous sintered getter disks stacked in a highly efficient gas trapping structure featuring pumping speed in excess of $2000 \mathrm{l} / \mathrm{s}\left(\mathrm{H}_{2}\right)$. The cartridge is integrated into a CF 100 flange containing heating elements for the getter activation. After the activation is carried out $\left(500^{\circ} \mathrm{C} \times 1 \mathrm{~h}\right)$, the NEG cartridge removes gases at room temperature without any need for electric power. On the other side of the same flange, an ion pump featuring $10 \mathrm{l} / \mathrm{s}$ for Ar and $20 \mathrm{l} / \mathrm{s}$ for CH_{4} is connected. Gas flows from the vacuum system to the ion pump through an optimized conductance. The optimized conductance and the special internal design of the ion pump allow the maximum exploitation of the ion pump sorption performance.
The NEXTorr D2000-10 is very suitable for particle accelerator and synchrotron applications where larger pumping speed and capacity in a very compact pump package are required to keep UHV conditions or below. It is very suitable also for analytical equipment like surface science systems (XPS, UPS, STM, and so on), MBE and vacuum deposition systems.

Total pump weight (magnets included)	6.8 kg
Total pump volume	1.8 litre
Type of ion pump	Noble Diode
Operation Voltage lon Element	5.0 kVdc
Operation Voltage NEG Element	110 Vdc

saes

group

Initial pumping speed (1/s)	Gas	NEG activated	NEG saturated
	O_{2}	1700	9
	H_{2}	2000	13
	CO	1100	11
	N_{2}	640	9
	CH_{4}	32	17
	Argon ${ }^{1}$	10 (2.5)	10 (2.5)
Sorption capacity (Torr•I)	Gas	Single run capacity ${ }^{2}$	Total capacity ${ }^{3}$
	O_{2}	300	>10000
	H_{2}	2250	N/A ${ }^{4}$
	CO	8	>1600
	N_{2}	2.8	>220
NEG section	Getter alloy type		St 172
	Alloy composition		ZrVFe
	Getter mass (g)		225 g
	Getter surface (cm^{2})		1900
ION section	Voltage applied		DC +5 kV
	Number of Penning cells		18
	Standard bake-out temperature		$150{ }^{\circ} \mathrm{C}$

1 Measured at 3×10^{-6} Torr. Unsaturated pump (saturated pump).
2 Capacity values with the NEG element at room temperature, corresponding to a drop of the pumping speed to 10% of its initial value.
3 Total capacity values for each single gas obtained after many reactivations (getter fully consumed). Capacity values for the various gases are not additive (a getter fully reacted with one gas specie will not sorb another gas).
4 After the getter element has reached its room temperature H_{2} capacity ($2250 \mathrm{Torr} \cdot \mathrm{l}$) it can be "regenerated". The regeneration process extracts the H_{2} stored in the getter. After being regenerated, the pump can start pumping H_{2} again

Ordering Information

Product	Product description	Code
NEXTorr PUMP	NEXTorr D 2000-10	$5 \mathrm{H0181}$
Pump power supply	NEXTorr PS NIOPS-06	3 B0440
Power supply cables	NEXTorr KIT OF CABLES-04-06	3 B0416
Power supply input cable	NIOPS INPUT CABLE	$3 B 0398$
Output cable ION element	NIOPSO4-06-OUTPUT CABLE ION-3MT	$3 B 0418$
Output cable NEG element	NIOPS04-06-OUTPUT CABLE NEG-3MT	$3 B 0419$

The NEXTorr ${ }^{\circledR}$ product line incorporates and exploits the patented concept of a combined pumping system comprising a getter pump and an ion pump, and have global Intellectual Property Rights coverage with patents already granted in the US $(8,287,247)$, Europe $(2,409,034)$, Japan $(5,372,239)$, China (102356236).

D 2000-10

The SAES Group manufacturing companies are ISO9001 certified, the Asian and Italian companies are also ISO14001 certified. Full information about our certifications for each company of the Group is available on our website at: www.saesgroup.com
D.VS.117.2.16

saes

group

[^0]
[^0]: SAES Group
 www.saesgroup.com
 neg_technology@saes-group.com

